Robust neuro-identification of nonlinear plants in electric power systems with missing sensor measurements

نویسندگان

  • Wei Qiao
  • Zhi Gao
  • Ronald G. Harley
  • Ganesh K. Venayagamoorthy
چکیده

Fault tolerant measurements are an essential requirement for system identification, control and protection. Measurements can be corrupted or interrupted due to sensor failure, broken or bad connections, bad communication, or malfunction of some hardware or software. This paper proposes a novel robust artificial neural network identifier (RANNI) by combining a sensor evaluation and (missing sensor) restoration scheme (SERS) and an ANN identifier (ANNI) in a cascading structure. This RANNI is able to provide continuous on-line identification of nonlinear plants when some crucial sensor measurements are unavailable. A static synchronous series compensator (SSSC) connected to a power system is used as a test system to examine the validity of the proposed model. Simulation studies are carried out with single and multiple phase current sensors missing; results show that the proposed RANNI continuously tracks the plant dynamics with good precision during the steady state, the small disturbance, the transient state after a large disturbance and the unbalanced three-phase operations. The proposed RANNI is readily applicable to other plant models in power systems. r 2007 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model-based Approach for Multi-sensor Fault Identification in Power Plant Gas Turbines

In this paper, ‎the multi-sensor fault diagnosis in the exhaust temperature sensors of a V94.2 heavy duty gas turbine is presented‎. ‎A Laguerre network-based fuzzy modeling approach is presented to predict the output temperature of the gas turbine for sensor fault diagnosis‎. Due to the nonlinear dynamics of the gas turbine, in these models the Laguerre filter parts are related to the linear d...

متن کامل

Effect of Distributed Power-Flow Controller (DPFC) on Power System Stability

Distributed flexible AC- transmission system (D-FACTS) is a recently advanced FACTS device with high flexibility and smaller size. The DPFC can control power flow in transmission lines, regulate bus voltages and it can also enhance stability margin in power grids. Adaptive-neural network-based fuzzy inference system (ANFIS) combines features of artificial neural network and fuzzy controller. Th...

متن کامل

DISTURBANCE REJECTION IN NONLINEAR SYSTEMS USING NEURO-FUZZY MODEL

The problem of disturbance rejection in the control of nonlinear systems with additive disturbance generated by some unforced nonlinear systems, was formulated and solved by {itshape Mukhopadhyay} and {itshape Narendra}, they applied the idea of increasing the order of the system, using neural networks the model of multilayer perceptron on several systems of varying complexity, so the objective...

متن کامل

A Comparison between SVC and STATCOM in Flicker Mitigation of Electric Arc Furnace using Practical Recorded Data

Electric arc furnace (EAF) is one of the largest loads in electric power systems. It is highly time varying and nonlinear. Its reactive power variations cause voltage fluctuations in nearby system which is known as flicker. On the other hand the nonlinear voltage-current characteristic causes strong voltage and current harmonics in EAF. To this end Flexible AC Transmission Systems (FACTS) techn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eng. Appl. of AI

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2008